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The previous chapter presented the six phases of the Data Analytics Lifecycle.
o Phase 1: Discovery

o Phase 2: Data Preparation

e Phase 3: Model Planning

o Phase 4: Model Building

e Phase 5: Communicate Results

e Phase 6: Operationalize

The first three phases involve various aspects of data exploration. In general, the success of a data
analysis project requires a deep understanding of the data. It also requires a toolbox for mining and pre-
senting the data. These activities include the study of the data in terms of basic statistical measures and
creation of graphs and plots to visualize and identify relationships and patterns. Several free or commercial
tools are available for exploring, conditioning, modeling, and presenting data. Because of its popularity and
versatility, the open-source programming language R is used to illustrate many of the presented analytical
tasks and models in this book.

This chapter introduces the basic functionality of the R programming language and environment. The
first section gives an overview of how to use R to acquire, parse, and filter the data as well as how to obtain
some basic descriptive statistics on a dataset. The second section examines using R to perform exploratory
data analysis tasks using visualization. The final section focuses on statistical inference, such as hypothesis
testing and analysis of variance in R.

3.1 Introductionto R

Ris a programming language and software framework for statistical analysis and graphics. Available for use
under the GNU General Public License [1], R software and installation instructions can be obtained via the
Comprehensive R Archive and Network [2]. This section provides an overview of the basic functionality of R.
In later chapters, this foundation in Ris utilized to demonstrate many of the presented analytical techniques.

Before delving into specific operations and functions of R later in this chapter, it is important to under-
stand the flow of a basic R script to address an analytical problem. The following R code illustrates a typical
analytical situation in which a dataset is imported, the contents of the dataset are examined, and some
modeling building tasks are executed. Although the reader may not yet be familiar with the R syntax,
the code can be followed by reading the embedded comments, denoted by #. In the following scenario,
the annual sales in U.S. dollars for 10,000 retail customers have been provided in the form of a comma-
separated-value (CSV) file. The read . csv () functionis used to import the CSV file. This dataset is stored
to the R variable sales using the assignment operator <-.

# import a CSV file of the total annual sales for each customer

sales <- read.csv("c:/data/yearly sales.csv")

# examine the imported dataset
head (sales)
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summary (sales)

# plot num_of_ orders vs. sales
plot (sales$num_of orders,sales$sales_total,
main="Number of Orders vs. Sales")

# perform a statistical analysis (fit a linear regression model)
results <- lm(sales$sales_total ~ sales$num_of orders)
summary (results)

# perform some diagnostics on the fitted model
# plot histogram of the residuals
hist (resultsSresiduals, breaks = 800)

In this example, the data file is imported using the read . csv () function. Once the file has been
imported, it is useful to examine the contents to ensure that the data was loaded properly as well as to become
familiar with the data. In the example, the head () function, by default, displays the first sixrecords of sales.

# examine the imported dataset
head (sales)

otal num_ of_orders gender

s 3
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The summary () function provides some descriptive statistics, such as the mean and median, for
each data column. Additionally, the minimum and maximum values as well as the 1st and 3rd quartiles are
provided. Because the gender column contains two possible characters, an “F” (female) or “M” (male),
the summary () function provides the count of each character’s occurrence.

summary (sales)
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Plotting a dataset’s contents can provide information about the relationships between the vari-
ous columns. In this example, the plot () function generates a scatterplot of the number of orders
(salessnum_of_ orders)againsttheannualsales (sales$sales_total).The $isused to refer-
ence a specific column in the dataset sales. The resulting plot is shown in Figure 3-1.

# plot num _of orders vs. sales
plot (sales$num_of orders,sales$sales_total,
main="Number of Orders vs. Sales")
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Graphically examining the data

Each point corresponds to the number of orders and the total sales for each customer. The plot indicates
that the annual sales are proportional to the number of orders placed. Although the observed relationship
between these two variables is not purely linear, the analyst decided to apply linear regression using the
1m () function as a first step in the modeling process.

results <- lm(sales$sales_total ~ sales$num_of orders)
results

The resulting intercept and slope values are =154.1 and 166.2, respectively, for the fitted linear equation.
However, resul t s stores considerably more information that can be examined with the summary ()
function. Details on the contents of resul t s are examined by applyingthe at tributes () function.
Because regression analysis is presented in more detail later in the book, the reader should not overly focus
on interpreting the following output.

summary (results)
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The summary () functionis an example of a generic function. A generic function is a group of func-
tions sharing the same name but behaving differently depending on the number and the type of arguments
they receive. Utilized previously, plot () is another example of a generic function; the plot is determined
by the passed variables. Generic functions are used throughout this chapter and the book. In the final
portion of the example, the following R code uses the generic function hist () to generate a histogram
(Figure 3-2) of the residuals stored in results. The function call illustrates that optional parameter values
can be passed. In this case, the number of breaks is specified to observe the large residuals.

# perform some diagnostics on the fitted model
# plot histogram of the residuals
hist (resultsSresiduals, breaks = 800)

Histogram of results$residuals

o
o]

N

[&]

€ o

a o

L

o

2 5

L n
- o

I T T T \
0 1000 2000 3000 4000

results$residuals

Evidence of large residuals

This simple example illustrates a few of the basic model planning and building tasks that may occur
in Phases 3 and 4 of the Data Analytics Lifecycle. Throughout this chapter, it is useful to envision how the
presented R functionality will be used in a more comprehensive analysis.

3.1.1 R Graphical User Interfaces

R software uses a command-line interface (CLI) that is similar to the BASH shell in Linux or the interactive
versions of scripting languages such as Python. UNIX and Linux users can enter command R at the terminal
prompt to use the CLI. For Windows installations, R comes with RGui.exe, which provides a basic graphical
user interface (GUI). However, to improve the ease of writing, executing, and debugging R code, several
additional GUIs have been written for R. Popular GUIs include the R commander [3], Rattle [4], and RStudio
[5]. This section presents a brief overview of RStudio, which was used to build the R examples in this book.
Figure 3-3 provides a screenshot of the previous R code example executed in RStudio.
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>

RStudio GUI

The four highlighted window panes follow.
o Scripts: Serves as an area to write and save R code
o Workspace: Lists the datasets and variablesin the R environment

o Plots: Displays the plots generated by the R code and provides a straightforward mechanism to
export the plots

o Console: Provides a history of the executed R code and the output

Additionally, the console pane can be used to obtain help information on R. Figure 3-4 illustrates that
by entering ? 1m at the console prompt, the help details of the 1m () function are provided on the right.
Alternatively, help (1m) could have been entered at the console prompt.

Functions suchas edit () and £ix () allow the user to update the contents of an R variable.
Alternatively, such changes can be implemented with RStudio by selecting the appropriate variable from
the workspace pane.

R allows one to save the workspace environment, including variables and loaded libraries, into an
.Rdata file using the save . image () function. An existing . Rdata file can be loaded using the
load.image () function. Tools such as RStudio prompt the user for whether the developer wants to
save the workspace connects prior to exiting the GUI.

The reader is encouraged to install R and a preferred GUI to try out the R examples provided in the book
and utilize the help functionality to access more details about the discussed topics.
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3.1.2 Data Import and Export
In the annual retail sales example, the dataset was imported into R using the read. csv () function as
in the following code.

sales <- read.csv("c:/data/yearly sales.csv")

R uses a forward slash (/) as the separator character in the directory and file paths. This convention
makes script files somewhat more portable at the expense of some initial confusion on the part of Windows
users, who may be accustomed to using a backslash (\) as a separator. To simplify the import of multiple files
with long path names, the setwd () function can be used to set the working directory for the subsequent
import and export operations, as shown in the following R code.

setwd ("c:/data/")
sales <- read.csv("yearly sales.csv")

Otherimportfunctionsinclude read. table () and read.delim (), whichareintended toimport
other common file types such as TXT. These functions can also be used to import the yearly sales
. csv file, as the following code illustrates.

sales_table <- read.table("yearly sales.csv", header=TRUE, sep=",")
sales_delim <- read.delim("yearly sales.csv", sep=",")

The main difference between these import functions is the default values. For example, the read
.delim () function expects the column separator to be atab ("\ t").In the event that the numerical data
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in a data file uses a comma for the decimal, R also provides two additional functions—read . csv2 () and
read.delim?2 () —toimport such data. Table 3-1 includes the expected defaults for headers, column
separators, and decimal point notations.

Import Function Defaults

Function Headers Separator Decimal Point
read.table () FALSE e un
read.csv () TRUE @ um
read.csv2 () TRUE & o
read.delim() TRUE “\t” “r
read.delim2 ()  TRUE “\t"

TheanalogousR functionssuchaswrite.table (), write.csv (),andwrite.csv2 () enable
exporting of R datasets to an external file. For example, the following R code adds an additional column
to the sales dataset and exports the modified dataset to an external file.

# add a column for the average sales per order

sales$per _order <- sales$sales_total/sales$Snum_of_ orders

# export data as tab delimited without the row names
write.table(sales,"sales_modified.txt", sep="\t", row.names=FALSE

Sometimes it is necessary to read data from a database management system (DBMS). R packages such
as DBI [6] and RODBC [7] are available for this purpose. These packages provide database interfaces
for communication between R and DBMSs such as MySQL, Oracle, SQL Server, PostgreSQL, and Pivotal
Greenplum. The following R code demonstrates how to install the RODBC package with the install
.packages () function.The 1ibrary () function loads the package into the R workspace. Finally, a
connector (conn) is initialized for connecting to a Pivotal Greenplum database t raining2 via open
database connectivity (ODBC) with user user.The t raining2 database must be defined either in the
/etc/ODBC. ini configuration file or using the Administrative Tools under the Windows Control Panel.

install.packages ("RODBC")
library (RODBC)
conn <- odbcConnect ("training2", uid="user", pwd="password")

The connector needs to be present to submit a SQL query to an ODBC database by using the
sqglQuery () function from the RODBC package. The following R code retrieves specific columns from
the housingtable in which household income (hinc) is greater than $1,000,000.

housing data <- sglQuery(conn, "select serialno, state, persons, rooms
from housing
where hinc > 1000000"

head (housing_data)
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Although plots can be saved using the RStudio GUI, plots can also be saved using R code by specifying
the appropriate graphic devices. Using the jpeg () function, the following R code creates a new JPEG
file, adds a histogram plot to the file, and then closes the file. Such techniques are useful when automating
standard reports. Other functions, such as png (), bmp (), pdf (),and postscript (), are available
in R to save plots in the desired format.

jpeg(file="c:/data/sales_hist.jpeg") # create a new jpeg file
hist (sales$num_of_orders)
dev.off ()

# export histogram to jpeg
# shut off the graphic device

More information on data imports and exports can befound athttp: //cran.r-project.org/
doc/manuals/r-release/R-data.html,suchashow toimport datasets from statistical software
packages including Minitab, SAS, and SPSS.

3.1.3 Attribute and Data Types

In the earlier example, the sales variable contained a record for each customer. Several characteristics,
such as total annual sales, number of orders, and gender, were provided for each customer. In general,
these characteristics or attributes provide the qualitative and quantitative measures for each item or subject
of interest. Attributes can be categorized into four types: nominal, ordinal, interval, and ratio (NOIR) [8].
Table 3-2 distinguishes these four attribute types and shows the operations they support. Nominal and
ordinal attributes are considered categorical attributes, whereas interval and ratio attributes are considered
numeric attributes.

NOIR Attribute Types

Categorical (Qualitative) Numeric (Quantitative)

Nominal Ordinal Interval Ratio
Definition The valuesrepresent  Attributes The difference Both the difference
labels that distin- imply a between two and the ratio of
guish one from sequence. values is two values are
another. meaningful. meaningful.
Examples ZIP codes, national- Quality of Temperaturein Age, temperature
ity, street names, diamonds, Celsius or in Kelvin, counts,
gender,employeelD  academic Fahrenheit, cal- length, weight
numbers, TRUE or grades, mag- endar dates,
FALSE nitude of latitudes
earthquakes
Operations =, # = # = = %
<, S,>, 2 <, s>, 2, <, 5,>, 2,
+ = +
X, =




/] REVIEW OF BASICDATA ANALYTIC METHODS USING R

Data of one attribute type may be converted to another. For example, the qua 1 i t y of diamonds {Fair,
Good, Very Good, Premium, Ideal} is considered ordinal but can be converted to nominal {Good, Excellent}
with a defined mapping. Similarly, a ratio attribute like Age can be converted into an ordinal attribute such
as {Infant, Adolescent, Adult, Senior}. Understanding the attribute types in a given dataset is important
to ensure that the appropriate descriptive statistics and analytic methods are applied and properly inter-
preted. For example, the mean and standard deviation of U.S. postal ZIP codes are not very meaningful or
appropriate. Proper handling of categorical variables will be addressed in subsequent chapters. Also, it is
useful to consider these attribute types during the following discussion on R data types.

Numeric, Character, and Logical Data Types

Like other programming languages, R supports the use of numeric, character, and logical (Boolean) values.
Examples of such variables are given in the following R code.

i<-1 # create a numeric variable
sport <- "football" # create a character variable
flag <- TRUE # create a logical variable

R provides several functions, such as class () and typeof (), to examine the characteristics of a
given variable. The c1lass () function represents the abstract class of an object. The typeof () func-
tion determines the way an object is stored in memory. Although i appears to be an integer, 1 isinternally
stored using double precision. To improve the readability of the code segments in this section, the inline
R comments are used to explain the code or to provide the returned values.

class (i) # returns "numeric"
typeof (1) # returns "double"
class (sport) # returns "character"
typeof (sport) # returns "character"
class(flag) # returns "logical"
typeof (flag) # returns "logical™"

Additional R functions exist that can test the variables and coerce a variable into a specific type. The
following R code illustrates how to test if 1 isan integer using the is . integer () function and to coerce
1into a new integer variable, 7, using the as . integer () function. Similar functions can be applied
for double, character, and logical types.

is.integer(i) # returns FALSE
j <- as.integer (i) # coerces contents of i into an integer
is.integer(j) # returns TRUE

The application of the 1ength () function reveals that the created variables each have a length of 1.
One might have expected the returned length of sport to have been 8 for each of the characters in the
string "football". However, these three variables are actually one element, vectors.

length (i) # returns 1
length(flag) # returns 1
length (sport) # returns 1 (not 8 for "football")
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Vectors

Vectors are a basic building block for data in R. As seen previously, simple R variables are actually vectors.
A vector can only consist of values in the same class. The tests for vectors can be conducted using the
is.vector () function.

is.vector (i) # returns TRUE
is.vector (flag) # returns TRUE
is.vector (sport) # returns TRUE

R provides functionality that enables the easy creation and manipulation of vectors. The following R
code illustrates how a vector can be created using the combine function, c () or the colon operator, :,
to build a vector from the sequence of integers from 1 to 5. Furthermore, the code shows how the values
of an existing vector can be easily modified or accessed. The code, related to the z vector, indicates how
logical comparisons can be built to extract certain elements of a given vector.

u <- c("red", "yellow", "blue") # create a vector "red" "yellow" "blue"
u # returns "red" "yellow" "blue"

ul1l] # returns "red" (1lst element in u)

v <- 1:5 # create a vector 1 2 3 4 5

v # returns 1 2 3 4 5

sum (v) # returns 15

w<- VvV * 2 # create a vector 2 4 6 8 10

w # returns 2 4 6 8 10

w[3] # returns 6 (the 3rd element of w)

Z <=V + W # sums two vectors element by element

Z # returns 3 6 9 12 15

z > 8 # returns FALSE FALSE TRUE TRUE TRUE
z[lz > 8] # returns 9 12 15

zlz > 8 | z < 5] # returns 3 9 12 15 ("|" denotes "or"

Sometimes it is necessary to initialize a vector of a specific length and then populate the content of
the vector later. The vector () function, by default, creates a logical vector. A vector of a different type
can be specified by using the mode parameter. The vector ¢, an integer vector of length 0, may be useful
when the number of elements is not initially known and the new elements will later be added to the end
of the vector as the values become available.

a <- vector(length=3) # create a logical vector of length 3
a # returns FALSE FALSE FALSE

b <- vector(mode="numeric", 3) # create a numeric vector of length 3
typeof (b) # returns "double"

b[2] <- 3.1 # assign 3.1 to the 2nd element

b # returns 0.0 3.1 0.0

c <- vector (mode="integer", 0) # create an integer vector of length 0
c # returns integer(0)

length(c) # returns 0

Although vectors may appear to be analogous to arrays of one dimension, they are technically dimen-
sionless, as seen in the following R code. The concept of arrays and matrices is addressed in the following
discussion.
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length (b) # returns 3
dim(b) # returns NULL (an undefined value)
Arrays and Matrices

Thearray () function can be used to restructure a vector as an array. For example, the following R code
builds a three-dimensional array to hold the quarterly sales for three regions over a two-year period and
then assign the sales amount of $158,000 to the second region for the first quarter of the first year.

# the dimensions are 3 regions, 4 quarters, and 2 years
quarterly sales <- array(0, dim=c(3,4,2))
quarterly sales[2,1,1] <- 158000

quarterly sales

A two-dimensional array is known as a matrix. The following code initializes a matrix to hold the quar-
terly sales for the three regions. The parameters nrow and ncol define the number of rows and columns,
respectively, for the sales matrix.

sales_matrix <- matrix (0, nrow = 3, ncol = 4)
sales_matrix

R provides the standard matrix operations such as addition, subtraction, and multiplication, as well
as the transpose function t () and the inverse matrix function matrix.inverse () included in the
matrixcalc package. The following R code builds a 3 x 3 matrix, M, and multiplies it by its inverse to
obtain the identity matrix.

library(matrixcalc)
M <- matrix(c(1,3,3,5,0,4,3,3,3),nrow = 3,ncol = 3) # build a 3x3 matrix
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M %*% matrix.inverse (M) # multiply M by inverse (M)
(.11 [.2]1 [.,3]

(1,1 1 0 0

(2,1 0 1 0

(3,1 0 0 1

Data Frames

Similar to the concept of matrices, data frames provide a structure for storing and accessing several variables
of possibly different data types.Infact,asthe is .data. frame () function indicates, a data frame was
created by the read. csv () function at the beginning of the chapter.

#import a CSV file of the total annual sales for each customer
sales <- read.csv("c:/data/yearly sales.csv")
is.data.frame (sales) # returns TRUE

As seen earlier, the variables stored in the data frame can be easily accessed using the $ notation. The
following R code illustrates that in this example, each variable is a vector with the exception of gender,
whichwas, bya read. csv () default,imported as a factor. Discussed in detail later in this section, a factor
denotes a categorical variable, typically with a few finite levels such as “F” and “M” in the case of gender.

length (sales$num_of_ orders) # returns 10000 (number of customers)
returns TRUE

returns TRUE

returns TRUE

returns FALSE

is.vector (sales$cust_id)

is.vector

(
is.vector(sales$sales_total)

(sales$num_of_orders)

(

H+ = H

is.vector (salessgender)

is.factor (salessgender) # returns TRUE

Because of their flexibility to handle many data types, data frames are the preferred input format for
many of the modeling functions available in R. The following use of the st () function provides the
structure of the sales data frame. This function identifies the integer and numeric (double) data types,
the factor variables and levels, as well as the first few values for each variable.

str(sales) # display structure of the data frame object

'data.frame': 10000 obs.

$ cust_id : int 10

$ sales_total : num 800
$ num _of orders: int 3 3

$ gender : Factor w/ 2 levels "F","M": 1 122112212

In the simplest sense, data frames are lists of variables of the same length. A subset of the data frame
can be retrieved through subsetting operators. R's subsetting operators are powerful in that they allow
one to express complex operations in a succinct fashion and easily retrieve a subset of the dataset.

# extract the fourth column of the sales data frame
sales|[, 4]
# extract the gender column of the sales data frame

75
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sales$Sgender

# retrieve the first two rows of the data frame
sales[1:2,]

# retrieve the first, third, and fourth columns
sales[,c(1,3,4)]

# retrieve both the cust_id and the sales_total columns
sales[,c("cust_id", "sales_total")]

# retrieve all the records whose gender is female
sales[salessgender=="F",]

The following R code shows that the class of the sales variable is a data frame. However, the type of
the sales variableisalist. Alistis a collection of objects that can be of various types, including other lists.

class(sales)

typeof (sales)

Lists

Lists can contain any type of objects, including other lists. Using the vector v and the matrix M created in
earlier examples, the following R code creates assortment, a list of different object types.

# build an assorted list of a string, a numeric, a list, a vector,
# and a matrix

housing <- list("own", "rent")

assortment <- list("football", 7.5, housing, v, M)

assortment
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In displaying the contents of assortment, the use of the double brackets, [ [1], is of particular
importance. As the following R code illustrates, the use of the single set of brackets only accesses an item
in the list, not its content.

# examine the fifth object, M, in the list

class (assortment [5]) # returns "list"

length (assortment [5]) # returns 1

class(assortment [ [5]]) # returns "matrix"

length (assortment [[5]]) # returns 9 (for the 3x3 matrix)

As presented earlier in the data frame discussion, the st r () function offers details about the structure
of alist.

str(assortment)

List of 5
$ : chr "football™"
$ : num 7.5

$ :List of 2

chr "own"

chr "rent"
S int [1:5] 1 2 3 4 5
$ : num [1:3, 1:3] 1 3 3504 3 3 3

Factors

Factors were briefly introduced during the discussion of the gender variable in the data frame sales.
In this case, gender could assume one of two levels: F or M. Factors can be ordered or not ordered. In the
case of gender, the levels are not ordered.

class(salessgender) # returns "factor"
is.ordered (sales$gender) # returns FALSE

Included with the ggplot2 package, the diamonds data frame contains three ordered factors.
Examining the cut factor, there are five levels in order of improving cut: Fair, Good, Very Good, Premium,
and Ideal. Thus, sales$gender contains nominal data, and diamonds$cut contains ordinal data.

head (sales$gender) # display first six values and the levels
FFMMFF
Levels: F M

library(ggplot2)
data (diamonds) # load the data frame into the R workspace
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str(diamonds)

'data.frame': 53940 obs. of 10 variables:

carat : num 0.31 0.24 0.24 0.26 0.22

cut : Ord. "Fair"<"Good"<..: 5 4 2 4 3
color : Ord.f "D"<"E"<"F"<"G"<..: 2 2 2 6 77
clarity: Ord. "I1"<"SI2"<"ST1"<..: 2 3 5 4 2

depth : num
num
price : int
bd : num

num

N

num

W U N A Vr A A U U U
I
4]
o
=
D

head (diamonds$cut) # display first six values and the levels

Ideal Premium Good Premium Good Very Good

Levels: Fair < Good < Very Good < Premium < Ideal

Suppose it is decided to categorize salesS$sales totals into three groups—small, medium,
and big—according to the amount of the sales with the following code. These groupings are the basis for
the new ordinal factor, spender, with levels {small, medium, big}.

# build an empty character vector of the same length as sales
sales_group <- vector (mode="character",
length=length(sales$sales_total))

# group the customers according to the sales amount

sales_group [sales$sales_total<100] <- "small"

sales_group [sales$sales_total>=100 & sales$sales_total<500] <- "medium"
sales_group [sales$sales_total>=500] <- "big"

# create and add the ordered factor to the sales data frame

spender <- factor(sales_group,levels=c("small", "medium", "big"),
ordered = TRUE)

sales <- cbind(sales, spender)

str(salesS$Sspender)

Ord.factor w/ 3 levels "small"<"medium"<..: 3 2 1 23 11121

head (salesS$spender)
big medium small medium big small

Levels: small < medium < big

The cbind () function is used to combine variables column-wise. The rbind () function is used
to combine datasets row-wise. The use of factors is important in several R statistical modeling functions,
such as analysis of variance, aov (), presented later in this chapter, and the use of contingency tables,
discussed next.
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Contingency Tables

InR, table refers to a class of objects used to store the observed counts across the factors for a given dataset.
Such a table is commonly referred to as a contingency table and is the basis for performing a statistical
test on the independence of the factors used to build the table. The following R code builds a contingency
table based on the sales$gender and sales$spender factors.

# build a contingency table based on the gender and spender factors
sales_table <- table(sales$gender,sales$spender)

sales_table

small medium big

F 7

M 1656

class(sales_table) # returns "table"
typeof (sales_table) # returns "integer"
dim(sales_table) # returns 2 3

# performs a chi-squared test

summary (sales_table)
Number of ca in table: 10000
Num

Test for independence of all factors:

Chisg = 1.516, df = 2, p-value = 0.4686

Based on the observed counts in the table, the summary () function performs a chi-squared test
on the independence of the two factors. Because the reported p-value is greater than 0.05, the assumed

independence of the two factors is not rejected. Hypothesis testing and p-values are covered in more detail
later in this chapter. Next, applying descriptive statistics in R is examined.

3.1.4 Descriptive Statistics

It has already been shown that the summary () function provides several descriptive statistics, such as
the mean and median, about a variable such as the sales data frame. The results now include the counts
for the three levels of the spender variable based on the earlier examples involving factors.

summary (sales)

cust_id sales_total num_of orders spender
Min. Min 30.02 Min. 1.000 small :3382
1st Qu l1st Qu.: 80.29 1st Qu.: 2.000 medium:5469
Median Median : 151.65 Median : 2.000 big :1149
Mean Mean Mean : 2.428
3rd Qu 3rd Qu.: 3rd Qu.: 3.000
Max Max. Max. :22.000

The following code provides some common R functions that include descriptive statistics. In parenthe-
ses, the comments describe the functions.

79




REVIEW OF BASIC DATA ANALYTIC METHODS USINGR

# to simplify the function calls, assign
x <- sales$sales_total
y <- sales$num_of orders

cor(x,y) # returns 0.7508015 (correlation)

cov (x,Vy) # returns 345.2111 (covariance)

IOR(x) # returns 215.21 (interquartile range)
mean (x) # returns 249.4557 (mean)

median (x) # returns 151.65 (median)

range (x) # returns 30.02 7606.09 (min max)

sd (x) # returns 319.0508 (std. dev.)

var (x) # returns 101793.4 (variance)

The IQR () function provides the difference between the third and the first quartiles. The other func-
tions are fairly self-explanatory by their names. The reader is encouraged to review the available help files
for acceptable inputs and possible options.

The function apply () is useful when the same function is to be applied to several variables in a data
frame. For example, the following R code calculates the standard deviation for the first three variables in
sales.In the code, setting MARGIN=2 specifies that the sd () function is applied over the columns.
Other functions, suchas Lapply () and sapply (),apply afunction to alist or vector. Readers can refer
to the R help files to learn how to use these functions.

, MARGIN=2, FUN=sd)
s_total num_of orders

.050782 1.441119

apply(sales|,c(

1:3)]
cust id sale
31

o |

95680

©
[Ve)

2886.

Additional descriptive statistics can be applied with user-defined functions. The following R code
defines a function, my_range (), to compute the difference between the maximum and minimum values
returned by the range () function. In general, user-defined functions are useful for any task or operation
that needs to be frequently repeated. More information on user-defined functions is available by entering
help ("function™") inthe console.

# build a function to provide the difference between
# the maximum and the minimum values

my range <- function(v) {range(v)[2] - range(v)[1]}
my_range (x)

ae92 A7

/

3.2 Exploratory Data Analysis

So far, this chapter has addressed importing and exporting data in R, basic data types and operations, and
generating descriptive statistics. Functions such as summary () can help analysts easily get an idea of
the magnitude and range of the data, but other aspects such as linear relationships and distributions are
more difficult to see from descriptive statistics. For example, the following code shows a summary view of
a data frame data with two columns x and y. The output shows the range of x and y, but it's not clear
what the relationship may be between these two variables.
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summary (data)

A useful way to detect patterns and anomalies in the data is through the exploratory data analysis with
visualization. Visualization gives a succinct, holistic view of the data that may be difficult to grasp from the
numbers and summaries alone. Variables x and y of the data frame data can instead be visualized in a
scatterplot (Figure 3-5), which easily depicts the relationship between two variables. An important facet
of the initial data exploration, visualization assesses data cleanliness and suggests potentially important
relationships in the data prior to the model planning and building phases.

Scatterplotof Xand Y

M -

o = 0

X
A scatterplot can easily show if x and y share a relation

The code to generate data as well as Figure 3-5 is shown next.

X <- rnorm(50)
y <- x + rnorm(50, mean=0, sd=0.5)

data <- as.data.frame(cbind(x, y))
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summary (data)

library (ggplot2)
ggplot (data, aes(x=x, y=y)) +
geom_point (size=2) +
ggtitle("Scatterplot of X and Y") +
theme (axis.text=element_ text (size=12),
axis.title = element_text (size=14),
plot.title = element_text (size=20, face="bold"))

Exploratory data analysis [9] is a data analysis approach to reveal the important characteristics of a
dataset, mainly through visualization. This section discusses how to use some basic visualization techniques
and the plotting feature in R to perform exploratory data analysis.

3.2.1 Visualization Before Analysis

To illustrate the importance of visualizing data, consider Anscombe’s quartet. Anscombe’s quartet consists
of four datasets, as shown in Figure 3-6. It was constructed by statistician Francis Anscombe [10] in 1973
to demonstrate the importance of graphs in statistical analyses.

#1 #2 #3 #4
X ¥ x ¥ X ¥ x y
4 428 4 340 4 5.39 g 5.25
5 5.63 5 4.74 & 5.73 g 5.55
8 7.24 B 5.13 8 6.08 ] 578
7 432 7 7.26 7 g.42 ] £.58
8 6.95 8 814 8 877 a 6.9
g g.81 g 8.77 =l 7.11 g 7.04
10 g8.04 10 914 10 7.46 ] 7.71
11 .33 11 925 11 7.81 ] 7.0
12 10.34 12 9.13 12 .15 ] 8.47
13 7.58 13 8.74 13 12.74 ] 8.84
14 2.95 14 g.10 14 5.84 19 12.50
Anscombe’s quartet

The four datasets in Anscombe’s quartet have nearly identical statistical properties, as shown in Table 3-3.

Statistical Properties of Anscombe’s Quartet

Mean of x 9
Variance of y 1
Mean of y 7.50 (to 2 decimal points)
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Varianceof y 4.12 or 4.13 (to 2 decimal points)
Correlations between xand y 0.816
Linearregressionline y =3.00+ 0.50x (to 2 decimal points)

Based on the nearly identical statistical properties across each dataset, one might conclude that these
four datasets are quite similar. However, the scatterplots in Figure 3-7 tell a different story. Each dataset is
plotted as a scatterplot, and the fitted lines are the result of applying linear regression models. The estimated
regression line fits Dataset 1 reasonably well. Dataset 2 is definitely nonlinear. Dataset 3 exhibits a linear
trend, with one apparent outlier at x = 13. For Dataset 4, the regression line fits the dataset quite well.
However, with only points at two x values, it is not possible to determine that the linearity assumption is
proper.

124 o /

12- /// /

Anscombe’s quartet visualized as scatterplots

The R code for generating Figure 3-7 is shown next. It requires the R package ggplot2 [11], which can
be installed simply by running the command install.packages ("ggplot2").The anscombe
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dataset for the plotisincluded in the standard R distribution. Enter data () for a list of datasets included
in the R base distribution. Enter data (DatasetName) to make a dataset available in the current
workspace.

In the code that follows, variable Ievels is created using the g1 () function, which generates
factors of four levels (1, 2, 3, and 4), each repeating 11 times. Variable mydata is created using the
with (data, expression) function, which evaluates an expressionin an environment con-
structed from data. In this example, the da ta is the anscombe dataset, which includes eight attributes:
x1,x2,x3,x4,y1,y2,y3,and y4.The expression partin the code creates a data frame from the
anscombe dataset, and it only includes three attributes: x, y, and the group each data point belongs
to (mygroup).

install.packages ("ggplot2") # not required if package has been installed

data (anscombe) # load the anscombe dataset into the current workspace
anscombe
x1 x2 x3 x4 vl y2 y3 v4
1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 76
3 13 13 13 8 8.74 12.74 7.71
4 9 9 9 8 8. 8.84
5 11 11 11 8 9. 8.47
6 14 14 14 8 7.04
6 6 6 8 5.25

w o ™

10 5.39

8 4 4 4 1 1

9 12 12 12 8 9.13 8.15 5

10 7 7 7 8 7.26 6.42 7.
11 5 5 5 8 4.74 5.73 6.89
nrow (anscombe) # number of rows
[1] 11

# generates levels to indicate which group each data point belongs to
levels <- gl(4, nrow(anscombe))

levels
[1J]111111111112222222222233333333333
[34] 4 4 4 4 4 4 4 4 4 4 4

Levels: 1 2 3 4

# Group anscombe into a data frame
mydata <- with(anscombe, data.frame(x=c(xl,x2,x3,x4), y=c(yl,y2,y3,v4),
mygroup=levels))

mydata

X Yy mygroup
1 10 8.04 1
2 8 6.95 1
3 13 7.58 1
4 9 8.81 1
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41 19 12.50 4
42 8 5.56 4
43 8 7.91 4
44 8 6.89 4

# Make scatterplots using the ggplot2 package
library(ggplot2)
theme_set (theme_bw()) # set plot color theme

# create the four plots of Figure 3-7
ggplot (mydata, aes(x,y)) +
geom_point (size=4) +
geom_smooth (method="1m", £ill=NA, fullrange=TRUE) +

facet_wrap (~mygroup)

3.2.2 Dirty Data

This section addresses how dirty data can be detected in the data exploration phase with visualizations. In
general, analysts should look for anomalies, verify the data with domain knowledge, and decide the most
appropriate approach to clean the data.

Consider a scenario in which a bank is conducting data analyses of its account holders to gauge customer
retention. Figure 3-8 shows the age distribution of the account holders.

200 300 400
1

Freguency

100

Age

Age distribution of bank account holders

If the age data is in a vector called age, the graph can be created with the following R script:

hist (age, breaks=100, main="Age Distribution of Account Holders",
xlab="Age", ylab="Frequency", col="gray")

The figure shows that the median age of the account holders is around 40. A few accounts with account
holder age less than 10 are unusual but plausible. These could be custodial accounts or college savings
accounts set up by the parents of young children. These accounts should be retained for future analyses.
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However, the left side of the graph shows a huge spike of customers who are zero years old or have
negative ages. This is likely to be evidence of missing data. One possible explanation is that the null age
values could have been replaced by 0 or negative values during the data input. Such an occurrence may
be caused by entering age in a text box that only allows numbers and does not accept empty values. Or it
might be caused by transferring data among several systems that have different definitions for null values
(such as NULL, NA, 0, -1, or -2). Therefore, data cleansing needs to be performed over the accounts with
abnormal age values. Analysts should take a closer look at the records to decide if the missing data should
be eliminated or if an appropriate age value can be determined using other available information for each
of the accounts.

InR, the is.na () function provides tests for missing values. The following example creates a vector
x where the fourth value is not available (N2). The is . na () function returns TRUE at each NA value
and FALSE otherwise.

X <- ¢(1, 2, 3, NA, 4)
is.na(x)
[1] FALSE FALSE FALSE TRUE FALSE

Some arithmetic functions, such as mean (), applied to data containing missing values can yield an
NA result. To prevent this, set the na . rm parameter to TRUE to remove the missing value during the
function’s execution.

mean (x)
[1] NA
mean (x, na.rm=TRUE)
[1] 2

g

The na.exclude () function returns the object with incomplete cases removed.

DF <- data.frame(x = c¢(1, 2, 3), y = c(10, 20, NA))
DF

DF1 <- na.exclude (DF)

Account holders older than 100 may be due to bad data caused by typos. Another possibility is that these
accounts may have been passed down to the heirs of the original account holders without being updated.
In this case, one needs to further examine the data and conduct data cleansing if necessary. The dirty data
could be simply removed or filtered out with an age threshold for future analyses. If removing records is
not an option, the analysts can look for patterns within the data and develop a set of heuristics to attack
the problem of dirty data. For example, wrong age values could be replaced with approximation based
on the nearest neighbor—the record that is the most similar to the record in question based on analyzing
the differences in all the other variables besides age.
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Figure 3-9 presents another example of dirty data. The distribution shown here corresponds to the age
of mortgages in a bank’s home loan portfolio. The mortgage age is calculated by subtracting the origina-
tion date of the loan from the current date. The vertical axis corresponds to the number of mortgages at
each mortgage age.

Portfolio Distribution, Years Since Origination

Frequency

200 400 600 800 1000 1200

0

r T T ]
0 2 4 6 8 10

Morigage Age

Distribution of mortgage in years since origination from a bank’s home loan portfolio

If the data is in a vector called mortgage, Figure 3-9 can be produced by the following R script.

hist (mortgage, breaks=10, xlab="Mortgage Age", col="gray",
main="Portfolio Distribution, Years Since Origination")

Figure 3-9 shows that the loans are no more than 10 years old, and these 10-year-old loans have a
disproportionate frequency compared to the rest of the population. One possible explanation is that the
10-year-old loans do not only include loans originated 10 years ago, but also those originated earlier than
that. In other words, the 10 in the x-axis actually means = 10. This sometimes happens when data is ported
from one system to another or because the data provider decided, for some reason, not to distinguish loans
that are more than 10 years old. Analysts need to study the data further and decide the most appropriate
way to perform data cleansing.

Data analysts should perform sanity checks against domain knowledge and decide if the dirty data
needs to be eliminated. Consider the task to find out the probability of mortgage loan default. If the
past observations suggest that most defaults occur before about the 4th year and 10-year-old mortgages
rarely default, it may be safe to eliminate the dirty data and assume that the defaulted loans are less than
10 years old. For other analyses, it may become necessary to track down the source and find out the true
origination dates.

Dirty data can occur due to acts of omission. In the sales data used at the beginning of this chapter,
it was seen that the minimum number of orders was 1 and the minimum annual sales amount was $30.02.
Thus, there is a strong possibility that the provided dataset did notinclude the sales data on all customers,
just the customers who purchased something during the past year.
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3.2.3 Visualizing a Single Variable

Using visual representations of data is a hallmark of exploratory data analyses: letting the data speak to
its audience rather than imposing an interpretation on the data a priori. Sections 3.2.3 and 3.2.4 examine
ways of displaying data to help explain the underlying distributions of a single variable or the relationships
of two or more variables.

R has many functions available to examine a single variable. Some of these functions are listed in
Table 3-4.

Example Functions for Visualizing a Single Variable

Function Purpose

plot (data) Scatterplot where x is theindex and yis the value;
suitable for low-volume data

barplot (data) Barplot with vertical or horizontal bars
dotchart (data) Cleveland dot plot [12]
hist (data) Histogram
plot (density (data)) Density plot (a continuous histogram)
stem(data) Stem-and-leaf plot
rug (data) Add arug representation (1-d plot) of the data to an
existing plot
Dotchart and Barplot

Dotchart and barplot portray continuous values with labels from a discrete variable. A dotchart can be
created in Rwith the function dotchart (x, label=...),where xisanumericvectorand 1abel
is a vector of categorical labels for x. A barplot can be created with the barplot (height) function,
where height represents a vector or matrix. Figure 3-10 shows (a) a dotchart and (b) a barplot based
on the mtcars dataset, which includes the fuel consumption and 10 aspects of automobile design and
performance of 32 automobiles. This dataset comes with the standard R distribution.

The plots in Figure 3-10 can be produced with the following R code.

data (mtcars)

dotchart (mtcars$Smpg, labels=row.names (mtcars) ,cex=.7,
main="Miles Per Gallon (MPG) of Car Models",
xlab="MPG")

barplot (table (mtcarssScyl), main="Distribution of Car Cylinder Counts",
xlab="Number of Cylinders")

Histogram and Density Plot

Figure 3-11(a) includes a histogram of household income. The histogram shows a clear concentration of
low household incomes on the left and the long tail of the higher incomes on the right.
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Figure 3-11(b) shows a density plot of the logarithm of household income values, which emphasizes
the distribution. The income distribution is concentrated in the center portion of the graph. The code to
generate the two plots in Figure 3-11 is provided next. The rug () function creates a one-dimensional
density plot on the bottom of the graph to emphasize the distribution of the observation.

# randomly generate 4000 observations from the log normal distribution
income <- rlnorm(4000, meanlog = 4, sdlog = 0.7)
summary (income)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.301 33.720 54.970 70.320 88.800 659
income <- 1000*income
summary (income)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4301 33720 54970 70320 88800 659800
# plot the histogram
hist (income, breaks=500, xlab="Income", main="Histogram of Income")
# density plot
plot (density(logl0 (income), adjust=0.5),

main="Distribution of Income (logl0 scale)")

# add rug to the density plot
rug (logl0 (income) )

In the data preparation phase of the Data Analytics Lifecycle, the data range and distribution can be
obtained. If the data is skewed, viewing the logarithm of the data (if it's all positive) can help detect struc-
tures that might otherwise be overlooked in a graph with a regular, nonlogarithmic scale.

When preparing the data, one should look for signs of dirty data, as explained in the previous section.
Examining if the data is unimodal or multimodal will give an idea of how many distinct populations with
different behavior patterns might be mixed into the overall population. Many modeling techniques assume
that the data follows a normal distribution. Therefore, it is important to know if the available dataset can
match that assumption before applying any of those modeling techniques.

Consider a density plot of diamond prices (in USD). Figure 3-12(a) contains two density plots for pre-
mium and ideal cuts of diamonds. The group of premium cuts is shown in red, and the group of ideal cuts
is shown in blue. The range of diamond prices is wide—in this case ranging from around $300 to almost
$20,000. Extreme values are typical of monetary data such as income, customer value, tax liabilities, and
bank account sizes.

Figure 3-12(b) shows more detail of the diamond prices than Figure 3-12(a) by taking the logarithm. The
two humps in the premium cut represent two distinct groups of diamond prices: One group centers around
log,, price = 2.9 (where the price is about $794), and the other centers aroundlog,, price = 3.7 (where the
price is about $5,012). The ideal cut contains three humps, centering around 2.9, 3.3, and 3.7 respectively.

The R script to generate the plots in Figure 3-12 is shown next. The diamonds dataset comes with
the ggplot2 package.

library("ggplot2")
data (diamonds) # load the diamonds dataset from ggplot2

# Only keep the premium and ideal cuts of diamonds
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niceDiamonds <- diamonds [diamonds$cut=="Premium" |
diamondsScut=="Ideal",]

summary (niceDiamonds$cut)

# plot density plot of diamond prices

ggplot (niceDiamonds, aes(x=price, fill=cut)) +
geom_density(alpha = .3, color=NR)

# plot density plot of the logl0 of diamond prices

ggplot (niceDiamonds, aes(x=1oglO(price), fill=cut)) +
geom_density(alpha = .3, color=NA)

As an alternative to ggplot2, the lattice package provides a function called densityplot ()
for making simple density plots.

cut
Premium
Ideal

ra

_ density

] 5000 10000 15000

price " log10(price)

(a) (b)

Density plots of (a) diamond prices and (b) the logarithm of diamond prices

3.2.4 Examining Multiple Variables

A scatterplot (shown previously in Figure 3-1 and Figure 3-5) is a simple and widely used visualization
for finding the relationship among multiple variables. A scatterplot can represent data with up to five
variables using x-axis, y-axis, size, color, and shape. But usually only two to four variables are portrayed
in a scatterplot to minimize confusion. When examining a scatterplot, one needs to pay close attention
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to the possible relationship between the variables. If the functional relationship between the variables is
somewhat pronounced, the data may roughly lie along a straight line, a parabola, or an exponential curve.
If variable yis related exponentially to x, then the plot of x versus 1og (y) is approximately linear. If the
plotlooks more like a cluster without a pattern, the corresponding variables may have a weak relationship.

The scatterplot in Figure 3-13 portrays the relationship of two variables: x and y. The red line shown
on the graph is the fitted line from the linear regression. Linear regression will be revisited in Chapter 6,
“Advanced Analytical Theory and Methods: Regression.” Figure 3-13 shows that the regression line does
not fit the data well. This is a case in which linear regression cannot model the relationship between the
variables. Alternative methods such as the 1oess () function can be used to fit a nonlinear line to the
data. The blue curve shown on the graph represents the LOESS curve, which fits the data better than linear
regression.

Examining two variables with regression

The R code to produce Figure 3-13 is as follows. The runif (75, 0, 10) generates 75 numbers
between 0 to 10 with random deviates, and the numbers conform to the uniform distribution. The
rnorm (75, 0,20) generates 75 numbers that conform to the normal distribution, with the mean equal
to 0 and the standard deviation equal to 20. The points () function is a generic function that draws a
sequence of points at the specified coordinates. Parameter t ype="1" tells the function to draw a solid
line. The col parameter sets the color of the line, where 2 represents the red color and 4 represents the
blue color.

# 75 numbers between 0 and 10 of uniform distribution

X <- runif (75, 0, 10)

X <- sort(x)
y <- 200 + x*3 - 10 * x*2 + x + rnorm(75, 0, 20)

1r <- Im(y ~ x) # linear regression
poly <- loess(y ~ x) # LOESS
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fit <- predict(poly) # fit a nonlinear line
plot (x,y)

# draw the fitted line for the linear regression
points(x, lrsScoefficients([1l] + lrScoefficients[2] * x,
type = "1", col = 2)

# draw the fitted line with LOESS
points(x, fit, type = "1", col = 4)

Dotchart and Barplot

Dotchart and barplot from the previous section can visualize multiple variables. Both of them use color as
an additional dimension for visualizing the data.

For the same mtcars dataset, Figure 3-14 shows a dotchart that groups vehicle cylinders at the y-axis
and uses colors to distinguish different cylinders. The vehicles are sorted according to their MPG values.
The code to generate Figure 3-14 is shown next.

Miles Per Gallon {MPG) of Car Models
Grouped by Cylinder

4
Toyoeta Corolla o
Fiat 128 o
Lotus Europa
Honda Civic o
Fiat ¥1-9 o
Porsche 914-2 =
WMerc 2400 a
Merc 230
Datsun 710
Toyota Corona
Volvo 142E Lo

=]

Q
oo

Hornet 4 Drive o
Mazda RX4 Wag
Mazda Rx4
Ferrari Dino =
Merc 280 o
Valiant =

Merc 280C =

o0

Pontiac Firebird o
Hornet Sportabout o
Merc 45051 o

Merc 4505E g

Ford Pantera L =

Dodge Challenger o

AMC Javeln
Merc 4505LC
Maserati Bora B
Chrysler Imperial o
Duster 360 o
Camaro 228 o
Lincoln Continental =

Cadillac Fleetwood g

Miles Per Gallon

Dotplot to visualize multiple variables
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# sort by mpg
cars <- mtcars [order (mtcars$Smpg),]

# grouping variable must be a factor

cars$cyl <- factor(carsscyl)

cars$color[carsScyl==4] <- "red"

cars$color[carsScyl==6] <- "blue"

cars$color[cars$cyl==8] <- "darkgreen"

dotchart (cars$Smpg, labels=row.names (cars), cex=.7, groups= carsscyl,
main="Miles Per Gallon (MPG) of Car Models\nGrouped by Cylinder",
xlab="Miles Per Gallon", color=carsscolor, gcolor="black")

The barplot in Figure 3-15 visualizes the distribution of car cylinder counts and number of gears. The
x-axis represents the number of cylinders, and the color represents the number of gears. The code to
generate Figure 3-15 is shown next.

Distribution of Car Cylinder Counts and Gears

o
Number of Gears
| 3
24 | 4
a5
o -
5
c
3 w
o
O
« 4
o =
o -

4 8 8
Mumber of Cylinders

Barplot to visualize multiple variables

counts <- table(mtcarssgear, mtcarsScyl)
barplot (counts, main="Distribution of Car Cylinder Counts and Gears",
xlab="Number of Cylinders", ylab="Counts",
col=c("#0000FFFF", "#0080FFFF", "#00FFFFFF"),
legend = rownames (counts), beside=TRUE,
args.legend = list(x="top", title = "Number of Gears"))
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Box-and-Whisker Plot

Box-and-whisker plots show the distribution of a continuous variable for each value of a discrete variable.
The box-and-whisker plot in Figure 3-16 visualizes mean household incomes as a function of region in
the United States. The first digit of the U.S. postal (“ZIP”) code corresponds to a geographical region
in the United States. In Figure 3-16, each data point corresponds to the mean household income from a
particular zip code. The horizontal axis represents the first digit of a zip code, ranging from 0 to 9, where
0 corresponds to the northeast region of the United States (such as Maine, Vermont, and Massachusetts),
and 9 corresponds to the southwest region (such as California and Hawaii). The vertical axis represents
the logarithm of mean household incomes. The logarithm is taken to better visualize the distribution
of the mean household incomes.

Mean Household Income by Zip Code

log10{MeanHouseholdincome)

i} 1 ? 3 4 5

Zip1
A box-and-whisker plot of mean household income and geographical region

In this figure, the scatterplot is displayed beneath the box-and-whisker plot, with some jittering for the
overlap points so that each line of points widens into a strip. The “box” of the box-and-whisker shows the
range that contains the central 50% of the data, and the line inside the box is the location of the median
value. The upper and lower hinges of the boxes correspond to the first and third quartiles of the data. The
upper whisker extends from the hinge to the highest value that is within 1.5 * IQR of the hinge. The lower
whisker extends from the hinge to the lowest value within 1.5 * IQR of the hinge. IQR is the inter-quartile
range, as discussed in Section 3.1.4. The points outside the whiskers can be considered possible outliers.
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log10{MeanHouseholdincome)
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The graph shows how household income varies by region. The highest median incomes are in region
0 and region 9. Region 0 is slightly higher, but the boxes for the two regions overlap enough that the dif-
ference between the two regions probably is not significant. The lowest household incomes tend to be in
region 7, which includes states such as Louisiana, Arkansas, and Oklahoma.

Assuming a data frame called DF contains two columns (MeanHouseholdIncomeand Zip1l), the
following R script uses the ggplot2 library [11] to plot a graph that is similar to Figure 3-16.

library(ggplot2)
plot the jittered scatterplot w/ boxplot
color-code points with zip codes

H I

the outlier.size=0 prevents the boxplot from plotting the outlier
ggplot (data=DF, aes(x=as.factor(Zipl), y=logl0 (MeanHouseholdIncome))) +
geom_point (aes (color=factor(Zipl)), alpha=0.2, position="jitter") +
geom_boxplot (outlier.size=0, alpha=0.1) +

guides (colour=FALSE) +

ggtitle ("Mean Household Income by Zip Code")

Alternatively, one can create a simple box-and-whisker plot with the boxplot () function provided
by the R base package.

Hexbinplot for Large Datasets

This chapter has shown that scatterplot as a popular visualization can visualize data containing one or
more variables. But one should be careful about using it on high-volume data. If there is too much data, the
structure of the data may become difficult to see in a scatterplot. Consider a case to compare the logarithm
of household income against the years of education, as shown in Figure 3-17. The cluster in the scatterplot
on the left (a) suggests a somewhat linear relationship of the two variables. However, one cannot really see
the structure of how the data is distributed inside the cluster. This is a Big Data type of problem. Millions
or billions of data points would require different approaches for exploration, visualization, and analysis.

oo = o T Counts
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P g~ 5328
% - 5522
E 4771
o g 50+ 4075
o| = 3434
8| £ 848
ol 2 2316
e | & 1840
5 c 1418
q g 1051
E) - 739
2% 482
= | 219
a0+ 132
39
< T T T O
T T 4 [ § 0] 1
5 10 15 MeanEducation
MeanEducation
(a) (b)

(a) Scatterplot and (b) Hexbinplot of household income against years of education
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Although color and transparency can be used in a scatterplot to address this issue, a hexbinplot is
sometimes a better alternative. A hexbinplot combines the ideas of scatterplot and histogram. Similar to
a scatterplot, a hexbinplot visualizes data in the x-axis and y-axis. Data is placed into hexbins, and the third
dimension uses shading to represent the concentration of data in each hexbin.

In Figure 3-17(b), the same data is plotted using a hexbinplot. The hexbinplot shows that the data is
more densely clustered in a streak that runs through the center of the cluster, roughly along the regression
line. The biggest concentration is around 12 years of education, extending to about 15 years.

In Figure 3-17, note the outlier data at MeanEducat ion=0. These data points may correspond to
some missing data that needs further cleansing.

Assuming the two variables MeanHouseholdIncome and MeanEducat ion are from a data
frame named zcta, the scatterplot of Figure 3-17(a) is plotted by the following R code.

# plot the data points
plot (1logl0 (MeanHouseholdIncome) ~ MeanEducation, data=zcta)
# add a straight fitted line of the linear regression

abline (1Im(logl0 (MeanHouseholdIncome) ~ MeanEducation, data=zcta), col='red')

Using the zcta data frame, the hexbinplot of Figure 3-17(b) is plotted by the following R code.
Running the code requires the use of the hexbin package, which can be installed by running install
.packages ("hexbin").

library (hexbin)
# "g" adds the grid, "r" adds the regression line
# sgrt transform on the count gives more dynamic range to the shading
# inv provides the inverse transformation function of trans
hexbinplot (1ogl0 (MeanHouseholdIncome) ~ MeanEducation,

data=zcta, trans = sqgrt, inv = function(x) x*2, type=c("g", "r"))

Scatterplot Matrix

A scatterplot matrix shows many scatterplots in a compact, side-by-side fashion. The scatterplot matrix,
therefore, can visually represent multiple attributes of a dataset to explore their relationships, magnify
differences, and disclose hidden patterns.

Fisher's 1 ris dataset [13] includes the measurements in centimeters of the sepal length, sepal width,
petal length, and petal width for 50 flowers from three species of iris. The three species are setosa, versicolor,
and virginica. The iris dataset comes with the standard R distribution.

In Figure 3-18, all the variables of Fisher’s iris dataset (sepal length, sepal width, petal length, and
petal width) are compared in a scatterplot matrix. The three different colors represent three species of iris
flowers. The scatterplot matrix in Figure 3-18 allows its viewers to compare the differences across the iris
species for any pairs of attributes.
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Fisher's Iris Dataset
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Scatterplot matrix of Fisher’s [13] iris dataset

Consider the scatterplot from the first row and third column of Figure 3-18, where sepal length is com-
pared against petal length. The horizontal axis is the petal length, and the vertical axis is the sepal length.
The scatterplot shows that versicolor and virginica share similar sepal and petal lengths, although the latter
has longer petals. The petal lengths of all setosa are about the same, and the petal lengths are remarkably
shorter than the other two species. The scatterplot shows that for versicolor and virginica, sepal length
grows linearly with the petal length.

The R code for generating the scatterplot matrix is provided next.

# define the colors
colors <- c("red", "green", "blue")

# draw the plot matrix
pairs(iris[1:4], main = "Fisher's Iris Dataset",
pch = 21, bg = colors[unclass(iris$Species)] )

# set graphical parameter to clip plotting to the figure region
par(xpd = TRUE)

# add legend
legend (0.2, 0.02, horiz = TRUE, as.vector(unique(iris$Species)),
£ill = colors, bty = "n")
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The vector colors defines the color scheme for the plot. It could be changed to something like
colors <- c("gray50", "white", "black") tomake the scatterplotsgrayscale.

Analyzing a Variable over Time

Visualizing a variable over time is the same as visualizing any pair of variables, but in this case the goal is
to identify time-specific patterns.

Figure 3-19 plots the monthly total numbers of international airline passengers (in thousands) from
January 1940 to December 1960. Enter plot (AirPassengers) inthe R console to obtain a similar
graph. The plot shows that, for each year, a large peak occurs mid-year around July and August, and a small
peak happens around the end of the year, possibly due to the holidays. Such a phenomenon is referred to
as a seasonality effect.

AirPassengers
400 S00 600
1 | |

300
|
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|

T T T T T T
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Time

Airline passenger counts from 1949 to 1960

Additionally, the overall trend is that the number of air passengers steadily increased from 1949 to
1960. Chapter 8, “Advanced Analytical Theory and Methods: Time Series Analysis,” discusses the analysis
of such datasets in greater detail.

3.2.5 Data Exploration Versus Presentation
Using visualization for data exploration is different from presenting results to stakeholders. Not every type
of plot s suitable for all audiences. Most of the plots presented earlier try to detail the data as clearly as pos-
sible for data scientists to identify structures and relationships. These graphs are more technical in nature
and are better suited to technical audiences such as data scientists. Nontechnical stakeholders, however,
generally prefer simple, clear graphics that focus on the message rather than the data.

Figure 3-20 shows the density plot on the distribution of account values from a bank. The data has been
converted to the log,  scale. The plotincludes a rug on the bottom to show the distribution of the variable.
This graph is more suitable for data scientists and business analysts because it provides information that
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can be relevant to the downstream analysis. The graph shows that the transformed account values follow
an approximate normal distribution, in the range from $100 to $10,000,000. The median account value is
approximately $30,000 (1045), with the majority of the accounts between $1,000 (10%) and $1,000,000 (10°).

Distribution of Account Values (log10 scaie)
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Density plots are better to show to data scientists

Density plots are fairly technical, and they contain so much information that they would be difficult to
explain to less technical stakeholders. For example, it would be challenging to explain why the account
values are in the log, , scale, and such information is not relevant to stakeholders. The same message can
be conveyed by partitioning the data into log-like bins and presenting it as a histogram. As can be seenin
Figure 3-21, the bulk of the accounts are in the $1,000-1,000,000 range, with the peak concentration in the
$10-50K range, extending to $500K. This portrayal gives the stakeholders a better sense of the customer
base than the density plot shown in Figure 3-20.

Note that the bin sizes should be carefully chosen to avoid distortion of the data. In this example, the bins
in Figure 3-21 are chosen based on observations from the density plot in Figure 3-20. Without the density
plot, the peak concentration might be just due to the somewhat arbitrary appearing choices for the bin sizes.

This simple example addresses the different needs of two groups of audience: analysts and stakehold-
ers. Chapter 12, “The Endgame, or Putting It All Together,” further discusses the best practices of delivering
presentations to these two groups.

Following is the R code to generate the plots in Figure 3-20 and Figure 3-21.

# Generate random log normal income data

income = rlnorm(5000, meanlog=1og(40000), sdlog=log(5))

# Part I: Create the density plot

plot (density (loglO (income), adjust=0.5),
main="Distribution of Account Values (logl0 scale)")

# Add rug to the density plot
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rug (logl0 (income))

# Part II: Make the histogram
# Create "log-like bins"
breaks = c(0, 1000, 5000, 10000, 50000, 100000, 5e5, le6, 2e7)
# Create bins and label the data
bins = cut(income, breaks, include.lowest=T,
labels = c¢("< 1K", "1-5K", "5-10K", "10-50K",
"50-100K", "100-500K", "500K-1M", "> 1M"))
# Plot the bins

plot (bins, main = "Distribution of Account Values",
xlab = "Account value ($ USD)",
ylab = "Number of Accounts", col="blue")

Distribution of Account Values
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Histograms are better to show to stakeholders

3.3 Statistical Methods for Evaluation

Visualization is useful for data exploration and presentation, but statistics is crucial because it may exist
throughout the entire Data Analytics Lifecycle. Statistical techniques are used during the initial data explo-
ration and data preparation, model building, evaluation of the final models, and assessment of how the
new models improve the situation when deployed in the field. In particular, statistics can help answer the
following questions for data analytics:

e Model Building and Planning
o What are the best input variables for the model?

o Can the model predict the outcome given the input?
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e Model Evaluation
o Is the model accurate?
o Does the model perform better than an obvious guess?
o Does the model perform better than another candidate model?
o Model Deployment
o |s the prediction sound?
o Does the model have the desired effect (such as reducing the cost)?

This section discusses some useful statistical tools that may answer these questions.

3.3.1 Hypothesis Testing

When comparing populations, such as testing or evaluating the difference of the means from two samples
of data (Figure 3-22), a common technique to assess the difference or the significance of the difference is
hypothesis testing.

Distributions of two samples of data

The basic concept of hypothesis testing is to form an assertion and test it with data. When perform-
ing hypothesis tests, the common assumption is that there is no difference between two samples. This
assumption is used as the default position for building the test or conducting a scientific experiment.
Statisticians refer to this as the null hypothesis (H,). The alternative hypothesis (H,) is that there is a
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difference between two samples. For example, if the task is to identify the effect of drug A compared to
drug B on patients, the null hypothesis and alternative hypothesis would be this.

e H; Drug Aand drug B have the same effect on patients.
e H,: Drug A has a greater effect than drug B on patients.

If the task is to identify whether advertising Campaign C is effective on reducing customer churn, the
null hypothesis and alternative hypothesis would be as follows.

e H : Campaign Cdoes not reduce customer churn better than the current campaign method.
e H,: Campaign Cdoes reduce customer churn better than the current campaign.

Itis important to state the null hypothesis and alternative hypothesis, because misstating them is likely
to undermine the subsequent steps of the hypothesis testing process. A hypothesis test leads to either
rejecting the null hypothesis in favor of the alternative or not rejecting the null hypothesis.

Table 3-5 includes some examples of null and alternative hypotheses that should be answered during
the analytic lifecycle.

Example Null Hypotheses and Alternative Hypotheses

Application Null Hypothesis Alternative Hypothesis
Accuracy Forecast Model X does not predict better Model X predicts better than the existing
than the existing model. model.
Recommendation Algorithm Y does not produce Algorithm Y produces better recommen-
Engine better recommendations than dations than the current algorithm being
the current algorithm being used.
used.
Regression This variable does not affect the This variable affects outcome because its
Modeling outcome because its coefficient  coefficientis not zero.
is zero.

Once a model is built over the training data, it needs to be evaluated over the testing data to see if the
proposed model predicts better than the existing model currently being used. The null hypothesis is that
the proposed model does not predict better than the existing model. The alternative hypothesis is that
the proposed model indeed predicts better than the existing model. In accuracy forecast, the null model
could be that the sales of the next month are the same as the prior month. The hypothesis test needs to
evaluate if the proposed model provides a better prediction. Take a recommendation engine as an example.
The null hypothesis could be that the new algorithm does not produce better recommendations than the
current algorithm being deployed. The alternative hypothesis is that the new algorithm produces better
recommendations than the old algorithm.

When evaluating a model, sometimes it needs to be determined if a given input variable improves the
model. In regression analysis (Chapter 6), for example, this is the same as asking if the regression coefficient
for a variable is zero. The null hypothesis is that the coefficient is zero, which means the variable does not
have animpact on the outcome. The alternative hypothesis is that the coefficient is nonzero, which means
the variable does have an impact on the outcome.
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A common hypothesis test is to compare the means of two populations. Two such hypothesis tests are
discussed in Section 3.3.2.

3.3.2 Difference of Means

Hypothesis testing is a common approach to draw inferences on whether or not the two populations,
denoted pop1and pop?2, are different from each other. This section provides two hypothesis tests to com-
pare the means of the respective populations based on samples randomly drawn from each population.
Specifically, the two hypothesis tests in this section consider the following null and alternative hypotheses.

° HO: By =H,
o Hyip=p,

The y, and y1, denote the population means of pop1and pop2, respectively.

The basic testing approach is to compare the observed sample means, X, and )72, corresponding to each
population. If the values of X, and X, are approximately equal to each other, the distributions of X, and
)72 overlap substantially (Figure 3-23), and the null hypothesis is supported. A large observed difference
between the sample means indicates that the null hypothesis should be rejected. Formally, the difference
in means can be tested using Student’s t-test or the Welch'’s t-test.

."i \.\ It }1 = Ez 5
j ‘ this area is
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Overlap of the two distributions is large if )71 ~X 5

Student’s t-test

Student’s t-test assumes that distributions of the two populations have equal but unknown
variances. Suppose n, and n, samples are randomly and independently selected from two populations,
popland pop2, respectively. If each population is normally distributed with the same mean (y, = 11,) and
with the same variance, then T (the t-statistic), given in Equation 3-1, follows a t-distribution with
n,+n, —2 degrees of freedom (df).

where 52— (n _1)512 +(n,~1)8; 3-1)
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The shape of the t-distribution is similar to the normal distribution. In fact, as the degrees of freedom
approaches 30 or more, the t-distribution is nearly identical to the normal distribution. Because the numera-
tor of Tis the difference of the sample means, if the observed value of Tis far enough from zero such that
the probability of observing such a value of Tis unlikely, one would reject the null hypothesis that the
population means are equal. Thus, for a small probability, say o =0.05, T" is determined such that
P(\T\ >T")=0.05. After the samples are collected and the observed value of T is calculated according to
Equation 3-1, the null hypothesis (1, = 11,) is rejected if[T| > T".

In hypothesis testing, in general, the small probability, o, is known as the significance level of the test.
The significance level of the test is the probability of rejecting the null hypothesis, when the null hypothesis
is actually TRUE. In other words, for & = 0.05, if the means from the two populations are truly equal, then
in repeated random sampling, the observed magnitude of T would only exceed T* 5% of the time.

In the following R code example, 10 observations are randomly selected from two normally distributed
populations and assigned to the variables x and y. The two populations have a mean of 100 and 105,
respectively, and a standard deviation equal to 5. Student’s t-test is then conducted to determine if the
obtained random samples support the rejection of the null hypothesis.

# generate random observations from the two populations

X <- rnorm (10, mean=100, sd=5) # normal distribution centered at 100
y <- rnorm(20, mean=105, sd=5) # normal distribution centered at 105
t.test(x, y, var.equal=TRUE) # run the Student's t-test

Two Sample t-test

t = -1.7828, df = alue =
alternative hypotl true diffe is not equal to O
95 percent confiden interval

-6.1611557
sample estimates:

mean of x mean of y

From the R output, the observed value of Tist = —1.7828. The negative sign is due to the fact that the
sample mean of x is less than the sample mean of y. Using the gt () function in R, a T value of 2.0484
corresponds to a 0.05 significance level.

# obtain t value for a two-sided test at a 0.05 significance level
gt (p=0.05/2, df=28, lower.tail= FALSE)
2.048407

Because the magnitude of the observed T statistic is less than the T value corresponding to the 0.05
significance level ( —1.7828|< 2.0484), the null hypothesis is not rejected. Because the alternative hypothesis
is that the means are not equal (i, = 1,), the possibilities of both 1, > 1, and ¢, < 11, need to be considered.
This form of Student'’s t-test is known as a two-sided hypothesis test, and it is necessary for the sum of the
probabilities under both tails of the t-distribution to equal the significance level. It is customary to evenly
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divide the significance level between both tails. So, p=0.05/2=0.025 was used in the gt () functionto
obtain the appropriate t-value.

To simplify the comparison of the t-test results to the significance level, the R output includes a quantity
known as the p-value. In the preceding example, the p-value is 0.08547, which is the sum of P(T < —1.7828)
and P(T >1.7828). Figure 3-24 illustrates the t-statistic for the area under the tail of a t-distribution. The -t
and tare the observed values of the t-statistic. In the Routput, t =1.7828. The left shaded area corresponds
to the P(T <—1.7828), and the right shaded area corresponds to the P(T >1.7828).

Area under the tails (shaded) of a student’s t-distribution

In the R output, for a significance level of 0.05, the null hypothesis would not be rejected because the
likelihood of a T value of magnitude 1.7828 or greater would occur at higher probability than 0.05. However,
based on the p-value, if the significance level was chosen to be 0.10, instead of 0.05, the null hypothesis
would be rejected. In general, the p-value offers the probability of observing such a sample result given
the null hypothesis is TRUE.

A key assumption in using Student’s t-test is that the population variances are equal. In the previous
example, the t . test () function callincludes var . equal=TRUE to specify that equality of the vari-
ances should be assumed. If that assumption is not appropriate, then Welch'’s t-test should be used.

Welch’s t-test

When the equal population variance assumption is not justified in performing Student’s t-test for the dif-
ference of means, Welch’s t-test [14] can be used based on T expressed in Equation 3-2.

N 62
welch — 5712 5722
n. n

where )7,., S7,and n, correspond to the i-th sample mean, sample variance, and sample size. Notice that
Welch’s t-test uses the sample variance (S?) for each population instead of the pooled sample variance.

In Welch’s test, under the remaining assumptions of random samples from two normal populations with
the same mean, the distribution of T is approximated by the t-distribution. The following R code performs
the Welch’s t-test on the same set of data analyzed in the earlier Student’s t-test example.
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t.test(x, y, var.equal=FALSE) # run the Welch's t-test

data: x and y

df = 15.118, p-value = 0.1176

: true difference in means is not egual to 0

interval:

In this particular example of using Welch's t-test, the p-value is 0.1176, which is greater than the p-value
of 0.08547 observed in the Student’s t-test example. In this case, the null hypothesis would not be rejected
ata 0.10 or 0.05 significance level.

It should be noted that the degrees of freedom calculation is not as straightforward as in the Student’s
t-test. In fact, the degrees of freedom calculation often results in a non-integer value, as in this example.
The degrees of freedom for Welch's t-test is defined in Equation 3-3.
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In both the Student’s and Welch's t-test examples, the R output provides 95% confidence intervals on
the difference of the means. In both examples, the confidence intervals straddle zero. Regardless of the
result of the hypothesis test, the confidence interval provides an interval estimate of the difference of the
population means, not just a point estimate.

A confidence interval is an interval estimate of a population parameter or characteristic based on
sample data. A confidence interval is used to indicate the uncertainty of a point estimate. If x is the estimate
of some unknown population mean g, the confidence interval provides an idea of how close x is to the
unknown p. For example, a 95% confidence interval for a population mean straddles the TRUE, but
unknown mean 95% of the time. Consider Figure 3-25 as an example. Assume the confidence level is 95%.
If the task is to estimate the mean of an unknown value x in a normal distribution with known standard
deviation o and the estimate based on n observations is x, then the interval x + 20 straddles the unknown

n
value of 1 with about a 95% chance. If one takes 100 different samples and computes the 95% confi-
dence interval for the mean, 95 of the 100 confidence intervals will be expected to straddle the population
mean K.
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Confidence intervals appear again in Section 3.3.6 on ANOVA. Returning to the discussion of hypoth-
esis testing, a key assumption in both the Student’s and Welch’s t-test is that the relevant population
attribute is normally distributed. For non-normally distributed data, it is sometimes possible to transform
the collected data to approximate a normal distribution. For example, taking the logarithm of a dataset
can often transform skewed data to a dataset that is at least symmetric around its mean. However, if such
transformations are ineffective, there are tests like the Wilcoxon rank-sum test that can be applied to see
if two population distributions are different.

3.3.3 Wilcoxon Rank-Sum Test

A t-test represents a parametric test in that it makes assumptions about the population distributions from
which the samples are drawn. If the populations cannot be assumed or transformed to follow a normal
distribution, a nonparametric test can be used. The Wilcoxon rank-sum test [15] is a nonparametric
hypothesis test that checks whether two populations are identically distributed. Assuming the two popula-
tions are identically distributed, one would expect that the ordering of any sampled observations would
be evenly intermixed among themselves. For example, in ordering the observations, one would not expect
to see a large number of observations from one population grouped together, especially at the beginning
or the end of ordering.

Let the two populations again be pop 1 and pop2, with independently random samples of size n, and
n, respectively. The total number of observations is then N = n, +n,. The first step of the Wilcoxon test is
to rank the set of observations from the two groups as if they came from one large group. The smallest
observation receives a rank of 1, the second smallest observation receives a rank of 2, and so on with the
largest observation being assigned the rank of N. Ties among the observations receive a rank equal to
the average of the ranks they span. The test uses ranks instead of numerical outcomes to avoid specific
assumptions about the shape of the distribution.

After ranking all the observations, the assigned ranks are summed for at least one population’s sample.
If the distribution of pop1 is shifted to the right of the other distribution, the rank-sum corresponding to
popl'ssample should be larger than the rank-sum of pop2. The Wilcoxon rank-sum test determines the
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significance of the observed rank-sums. The following R code performs the test on the same dataset used
for the previous t-test.

wilcox.test (x, y, conf.int = TRUE)

Thewilcox.test () function ranks the observations, determines the respective rank-sums cor-
responding to each population’s sample, and then determines the probability of such rank-sums of such
magnitude being observed assuming that the population distributions are identical. In this example, the
probability is given by the p-value of 0.04903. Thus, the null hypothesis would be rejected at a 0.05 sig-
nificance level. The reader is cautioned against interpreting that one hypothesis test is clearly better than
another test based solely on the examples given in this section.

Because the Wilcoxon test does not assume anything about the population distribution, it is generally
considered more robust than the t-test. In other words, there are fewer assumptions to violate. However,
when it is reasonable to assume that the data is normally distributed, Student’s or Welch'’s t-test is an
appropriate hypothesis test to consider.

3.3.4 Type |l and Type Il Errors

A hypothesis test may result in two types of errors, depending on whether the test accepts or rejects the
null hypothesis. These two errors are known as type | and type Il errors.

o Atypelerroris the rejection of the null hypothesis when the null hypothesis is TRUE. The probabil-
ity of the type | error is denoted by the Greek letter cv.

o Atypellerroris the acceptance of a null hypothesis when the null hypothesis is FALSE. The prob-
ability of the type Il erroris denoted by the Greek letter (.

Table 3-6 lists the four possible states of a hypothesis test, including the two types of errors.

Typeland Type Il Error
H, is true H, is false
H,is accepted Correct outcome Typell Error
H,is rejected Typelerror Correct outcome
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The significance level, as mentioned in the Student’s t-test discussion, is equivalent to the type | error.
For a significance level such as o = 0.05, if the null hypothesis (1, = 11,) is TRUE, there is a 5% chance that
the observed T value based on the sample data will be large enough to reject the null hypothesis. By select-
ing an appropriate significance level, the probability of committing a type | error can be defined before
any data is collected or analyzed.

The probability of committing a Type Il error is somewhat more difficult to determine. If two population
means are truly not equal, the probability of committing a type Il error will depend on how far apart the
means truly are. To reduce the probability of a type Il error to a reasonable level, it is often necessary to
increase the sample size. This topic is addressed in the next section.

3.3.5 Power and Sample Size

The power of a test is the probability of correctly rejecting the null hypothesis. It is denoted by 1— 3, where
(s the probability of a type Il error. Because the power of a test improves as the sample size increases,
power is used to determine the necessary sample size. In the difference of means, the power of a hypothesis
test depends on the true difference of the population means. In other words, for a fixed significance level,
a larger sample size is required to detect a smaller difference in the means. In general, the magnitude of
the difference is known as the effect size. As the sample size becomes larger, it is easier to detect a given
effect size, 6, as illustrated in Figure 3-26.

Moderate Sample Size Larger Sample Size

oo
-I - I'—‘-qn
2
o
151

? T
¥

A larger sample size better identifies a fixed effect size

With a large enough sample size, almost any effect size can appear statistically significant. However, a
very small effect size may be useless in a practical sense. It is important to consider an appropriate effect
size for the problem at hand.

3.3.6 ANOVA

The hypothesis tests presented in the previous sections are good for analyzing means between two popu-
lations. But what if there are more than two populations? Consider an example of testing the impact of
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nutrition and exercise on 60 candidates between age 18 and 50. The candidates are randomly split into six
groups, each assigned with a different weight loss strategy, and the goal is to determine which strategy
is the most effective.

o Group 1 only eats junk food.

o Group 2 only eats healthy food.

e Group 3 eats junk food and does cardio exercise every other day.

e Group 4 eats healthy food and does cardio exercise every other day.

e Group 5 eats junk food and does both cardio and strength training every other day.

o Group 6 eats healthy food and does both cardio and strength training every other day.

Multiple t-tests could be applied to each pair of weight loss strategies. In this example, the weight loss
of Group 1 is compared with the weight loss of Group 2, 3,4, 5, or 6. Similarly, the weight loss of Group 2 is
compared with that of the next 4 groups. Therefore, a total of 15 t-tests would be performed.

However, multiple t-tests may not perform well on several populations for two reasons. First, because the
number of t-tests increases as the number of groups increases, analysis using the multiple t-tests becomes
cognitively more difficult. Second, by doing a greater number of analyses, the probability of committing
atleast one type | error somewhere in the analysis greatly increases.

Analysis of Variance (ANOVA) is designed to address these issues. ANOVA is a generalization of the
hypothesis testing of the difference of two population means. ANOVA tests if any of the population means
differ from the other population means. The null hypothesis of ANOVA is that all the population means are
equal. The alternative hypothesis is that at least one pair of the population means is not equal. In other
words,

oHym=p,=...=p,
o Hyp, =, for atleast one pair of i, j

As seen in Section 3.3.2, “Difference of Means,” each population is assumed to be normally distributed
with the same variance.

The first thing to calculate for the ANOVA is the test statistic. Essentially, the goal is to test whether the
clusters formed by each population are more tightly grouped than the spread across all the populations.

Let the total number of populations be k. The total number of samples N is randomly split into the k
groups. The number of samples in the i-th group is denoted as n,, and the mean of the group is )7, where
i€[1,k]. The mean of all the samples is denoted as X,

The between-groups mean sum of squares, S;, is an estimate of the between-groups variance. It
measures how the population means vary with respect to the grand mean, or the mean spread across all
the populations. Formally, this is presented as shown in Equation 3-4.

k
1 R
S =2 % 54

i=1

The within-group mean sum of squares, 52, is an estimate of the within-group variance. It quantifies
the spread of values within groups. Formally, this is presented as shown in Equation 3-5.
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If S2is much larger than S}, then some of the population means are different from each other.
The F-test statistic is defined as the ratio of the between-groups mean sum of squares and the within-
group mean sum of squares. Formally, this is presented as shown in Equation 3-6.

F if (3-6)
SW

The F-test statisticin ANOVA can be thought of as a measure of how different the means are relative to
the variability within each group. The larger the observed F-test statistic, the greater the likelihood that
the differences between the means are due to something other than chance alone. The F-test statistic
is used to test the hypothesis that the observed effects are not due to chance—that is, if the means are
significantly different from one another.

Consider an example that every customer who visits a retail website gets one of two promotional offers
or gets no promotion at all. The goal is to see if making the promotional offers makes a difference. ANOVA
could be used, and the null hypothesis is that neither promotion makes a difference. The code that follows
randomly generates a total of 500 observations of purchase sizes on three different offer options.

offers <- sample(c("offerl", "offer2", "nopromo"), size=500, replace=T)
# Simulated 500 observations of purchase sizes on the 3 offer options
purchasesize <- ifelse(offers=="offerl", rnorm(500, mean=80, sd=30),
ifelse(offers=="offer2", rnorm(500, mean=85, sd=30),
rnorm (500, mean=40, sd=30)))
# create a data frame of offer option and purchase size
offertest <- data.frame(offer=as.factor(offers),
purchase_amt=purchasesize)

The summary of the of fertest data frame shows that 170 of fer1, 161 of fer2, and 169
nopromo (no promotion) offers have been made. It also shows the range of purchase size (purchase
amt) for each of the three offer options.

# display a summary of offertest where offer="offerl"

summary (of fertest [offertest$offer=="offerl",])
offer purchase_,

nopromo: 0 Min.
offerl :170 1st Qu.: 5
offer2 : 0 Median
Mean : 8

3rd Qu.:

Max.

# display a summary of offertest where offer="offer2"

summary (offertest [offertest$offer=="offer2",])
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offer purchase_amt
04

nopromo : 0 Min.

offerl : 0 1st Qu.: 6
offer2 :161 Median 0
Mean : 89.09
3rd Qu.:107.48
Max. :154.33

# display a summary of offertest where offer="nopromo"
summary (offertest [offertestSoffer=="nopromo",])

offer purchase_amt
nopromo:169 Min. :-27.00
offerl : 0 1lst Qu.: 20.22
offer2 : 0 Median 42.44
40.97

58.96

164.04

The aov () function performs the ANOVA on purchase size and offer options.

# fit ANOVA test
model <- aov(purchase amt ~ offers, data=offertest)

The summary () function shows a summary of the model. The degrees of freedom for offers is 2,
which corresponds to the k —1in the denominator of Equation 3-4. The degrees of freedom for residuals
is 497, which corresponds to the n—k in the denominator of Equation 3-5.

summary (model)
Df S

1 Sqg Mean Sqg F value Pr(>F)
: 112611 130.6 <2e-16 **x*

offers 2 27

esiduals 497

Signif. codes: 0 '"***' Q.001 '**' Q.01 '*' 0.05 '.'" 0.1 ' "1

The output also includes the S} (112,611), 5}, (862), the F-test statistic (130.6), and the p-value (< 2e-16).
The F-test statistic is much greater than 1 with a p-value much less than 1. Thus, the null hypothesis that
the means are equal should be rejected.

However, the result does not show whether of fer1 is different from of f£er2, which requires addi-
tional tests. The TukeyHSD () function implements Tukey’s Honest Significant Difference (HSD) on all
pair-wise tests for difference of means.

TukeyHSD (model)

Tukey multiple comparisons of means

95% family-wise confidence level

(]
@
3
o
14
(e}
+h
Hh
0]
=
0
o))
)
o
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1l
(e}
+h
Hh
0]
[
o
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0n
+

Fit: aov(formula = purchase_

soffers
diff lwr upr

offerl-nopromo 40.961437 33.4638483 48.45903 0.0000
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The result includes p-values of pair-wise comparisons of the three offer options. The p-values for
offerl-nopromo and of fer-nopromo are equal to 0, smaller than the significance level 0.05.
This suggests that both of fer1 and of £er2 are significantly different from nopromo. A p-value of
0.0692895 for of fer2 against of fer1 is greater than the significance level 0.05. This suggests that
of fer2 is not significantly different from of fer1.

Because only the influence of one factor (offers) was executed, the presented ANOVA is known as one-
way ANOVA. If the goal is to analyze two factors, such as offers and day of week, that would be a two-way
ANOVA [16]. If the goal is to model more than one outcome variable, then multivariate ANOVA (or MANOVA)
could be used.

Summary

Ris a popular package and programming language for data exploration, analytics, and visualization. As an
introduction to R, this chapter covers the R GUI, data I/0, attribute and data types, and descriptive statistics.
This chapter also discusses how to use R to perform exploratory data analysis, including the discovery of
dirty data, visualization of one or more variables, and customization of visualization for different audiences.
Finally, the chapter introduces some basic statistical methods. The first statistical method presented in the
chapter is the hypothesis testing. The Student’s t-test and Welch's t-test are included as two example hypoth-
esis tests designed for testing the difference of means. Other statistical methods and tools presented in this
chapter include confidence intervals, Wilcoxon rank-sum test, type | and Il errors, effect size, and ANOVA.

Exercises

1. How many levels does £data contain in the following R code?

data = ¢(1,2,2,3,1,2,3,3,1,2,3,3,1)
fdata = factor(data)

™

Two vectors, v1 and v2, are created with the following R code:

vl <- 1:5
v2 <- 6:2

What are the results of cbind (v1,v2) and rbind (v1,v2)?

w

What R command(s) would you use to remove null values from a dataset?

P

What R command can be used to install an additional R package?

5. What R function is used to encode a vector as a category?

o

What is a rug plot used for in a density plot?

N

An online retailer wants to study the purchase behaviors of its customers. Figure 3-27 shows the den-
sity plot of the purchase sizes (in dollars). What would be your recommendation to enhance the plot
to detect more structures that otherwise might be missed?



